
Getting Started

Getting Started with ComputeCpp
ComputeCpp™
ComputeCpp Community Edition (CE) is a heterogeneous parallel programming platform that provides
a conformant implementation of SYCL™ 1.2.1 Khronos specification.

The supported OpenCL 1.2 platforms for ComputeCpp are AMD® and Intel®. Any platform with
OpenCL SPIR 1.2, SPIR-V, or PTX support should work. For example any ARM™ device that features an
OpenCL platform with the ability to consume SPIR-V.

Getting started with SYCL™ using ComputeCpp™
If you want to know more about what ComputeCpp, SYCL and OpenCL are, take a look at the
ComputeCpp Overview ComputeCpp Overview section.

This guide will show you how to set up your environment for ComputeCpp then compile and execute a
simple code sample, this should take around 15 minutes. After that you can examine the code and
discover how ComputeCpp follows the OpenCL execution model.

For full information on ComputeCpp platform support you can read the Platform Support Notes.

Step 1: Download ComputeCpp Community Edition

If you have not already, download the archive containing ComputeCpp and extract it somewhere on
your computer. Now clone the ComputeCpp package from GitHub that contains the sample code
here.

Step 2: Install any pre-requisite tools you do not already have

The pre-requisites for this guide are as follows, if you do not already have these environments
installed you’ll need to get them now. We don’t provide a guide to setting up an OpenCL environment
here, but there are plenty on the Internet.

CMake (version 3.2.2 and above)
OpenCL 1.2-capable hardware and drivers with SPIR 1.2 or SPIR-V support
OpenCL ICD Loader
OpenCL headers
gcc (version 4.8 and above)

Step 3: Check your hardware support

ComputeCpp includes a tool called computecpp_info. This allows you to check whether the hardware

http://www.khronos.org/registry/sycl/specs/sycl-1.2.1.pdf
https://www.codeplay.com/products/computesuite/computecpp/
https://developer.codeplay.com/products/computecpp/ce/guides/platform-support
https://github.com/codeplaysoftware/computecpp-sdk
https://github.com/codeplaysoftware/computecpp-sdk

on your target machine is supported by ComputeCpp. It will also tell us if the pre-requisites have been
met.

In a Terminal command line change to the "bin" folder in the location you extracted ComputeCpp to
and type the command:

>./computecpp_info

The output of this command will look something like this.

ComputeCpp Info (CE 1.0.0)

Toolchain information:

GLIBCXX: 20150426
This version of libstdc++ is supported.

Device Info:

Discovered 1 devices matching:
platform : <any>
 device type : <any>

 Device 0:

 Device is supported : YES - Tested internally
by Codeplay Software Ltd.
 CL_DEVICE_NAME : Intel(R) Core(TM)
i7-6600U CPU @ 2.60GHz
 CL_DEVICE_VENDOR : Intel(R) Corporation
 CL_DRIVER_VERSION : 1.2.0.25
 CL_DEVICE_TYPE : CL_DEVICE_TYPE_CPU

This output will show what CPUs or GPUs on your hardware that are supported by ComputeCpp. There
is also a guide for the computecpp_info tool, and a Supported Platforms guide.

https://developer.codeplay.com/products/computecpp/ce/guides/platform-support/hardware-support-tool
https://developer.codeplay.com/products/computecpp/ce/guides/platform-support

Step 4: Set up the ComputeCpp build environment

The sample code for ComputeCpp is built using CMake (minimum v 3.2.2), you can find out more
about CMake here you can find out more about CMake here.

Most Linux platforms also offer CMake through a packaging system such as wget or apt-get making it
easy to install.

The CMake variable

ComputeCpp_DIR

must be set in order to build with ComputeCpp.

This should be set to the root directory of the ComputeCpp install (i.e the directory with the folders
bin, include, lib)

Step 5: Build a ComputeCpp application

We’ll now build the simple_vector_add sample code, this application adds two vectors of scalar type
on a SYCL device.

First in the terminal change to the root directory of the package you cloned from GitHub. This is the
folder containing "samples" and "documents"

>mkdir build

Now change into that directory

>cd build

Then call cmake to build all the sample code in the package

>cmake ../ -DComputeCpp_DIR=/path/to/computecpp
>make

This will build the executable for the sample code.

Step 6: Execute a ComputeCpp application

In the "simple_vector_add" folder simply call the generated file to execute

>cd samples/simple_vector_add

>./simple_vector_add

When successful you will see an ouput in the terminal window stating whether the programming

https://cmake.org/

executed successfully or not.

Step 7: Modify a ComputeCpp application

This sample application adds two simple vectors together. These vectors are held in arrays within the
code.

The application adds A and B together and puts the sum into C, and also adds D and E together and
puts them in F.

Change some of the numbers in the arrays, build again using the

>make

command and then execute again in the same way as in “Step 5.”

If you would like to learn more about how to develop with SYCL try following our SYCL guide or you
can find out more about how ComputeCpp applications are structured in the the Anatomy Of A
ComputeCpp Application guide.

The ComputeCpp SDK complements the ComputeCpp Package with build system integration, sample
code and documentation and is available on GitHub. The ComputeCpp Integration Guide offers
advice on integrating ComputeCpp with existing applications

AMD is a registered trademark of Advanced Micro Devices, Inc. Intel is a trademark of Intel
Corporation or its subsidiaries in the U.S. and/or other countries. NVIDIA and CUDA are registered
trademarks of NVIDIA Corporation

https://developer.codeplay.com/products/computecpp/ce/guides/sycl-guide
https://developer.codeplay.com/products/computecpp/ce/guides/anatomy-of-a-computecpp-app
https://developer.codeplay.com/products/computecpp/ce/guides/anatomy-of-a-computecpp-app
https://github.com/codeplaysoftware/computecpp-sdk/tree/master/samples
https://developer.codeplay.com/products/computecpp/ce/guides/integration-guide

